If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+26X+106=0
a = 1; b = 26; c = +106;
Δ = b2-4ac
Δ = 262-4·1·106
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-6\sqrt{7}}{2*1}=\frac{-26-6\sqrt{7}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+6\sqrt{7}}{2*1}=\frac{-26+6\sqrt{7}}{2} $
| 9x-2=10x+8 | | 6.5n-7.0=4.2-1.5n | | 4k-(7k-3)=5k-6 | | 6x-6/3=6 | | 2k²=-48 | | 3x+1+4x+5=90 | | 6(x-3)-10=6x-28 | | 2x+8=5(x-7)-3x | | -2(7-5x)+-2(3x-8)=3x-9(7x-6) | | 6x-5/9+6=4x/5 | | 18x-4=2x-6 | | 39=9-5x | | 3n^2+17n-1000=0 | | 3x+22=32 | | 32=2x+22 | | (6x+26)+(2x-9)=11x-31 | | 0=-16x^2-64x-40 | | 7x-4+6x-6=142 | | 6x-22+8x+34=90 | | 6x-22+8x+34=60 | | -4(9k-3)=12-36k | | 3(3x+2)=7x+6 | | 8=15x+9 | | -5(-7n+6)=-30+35n | | 1/32x+10=1/4x+54 | | -k+3=3-k | | 2x+14+2x+14=125 | | 7w+7=20+7w | | 2-(x+4)=5 | | √x²-6x+9=2 | | √3x=X+60 | | x=50x+130x |